Label

Jumat, 31 Oktober 2014

Sejarah Matematika

Sejarah Matematika

Kata “matematika” berasal dari kata μάθημα (máthema)  dalam bahasa Yunani yang diartikan sebagai “sains, ilmu pengetahuan, atau belajar” juga μαθηματικός (mathematikós) yang diartikan sebagai “suka belajar ilmu matematika telah banyak dikenal orang pada masa pra sejarah. Banyak ditemukan berbagai tulisan matematika di berbagai wilayah yang merupakan sisa peninggalan zaman prasejarah, di antaranya :
a) matematika Babilonia tahun 1900 SM, ditemukan oleh Plimpton;
b) matematika Moskow di Mesir tahun 1850 SM;
c) matematika Rhind di Mesir tahun 1650 SM;
d) sulbha sutra / matematika India tahun 800 SM.

Matematika tumbuh dan berkembang karena proses berpikir. Oleh karena itu logika merupakan dasar untuk terbentuknya matematika. Logika adalah bayi matematika, sebaliknya matematika adalah masa dewasa logika.

Pada awal perkembangan matematika di Indonesia setelah penjajahan Belanda dan Jepang, digunakan istilah ”Ilmu Pasti” untuk matematika. Dalam penyelenggaraan di sekolah digunakan berbagai istilah cabang matematika seperti (1) Ilmu Ukur, (2) Aljabar, (3) Trigonometri, (4) Goniometri, (5) Stereometri, (6) Ilmu Ukur Lukis, dan lain sebagainya.

Sejarah matematika termasuk bagian dari matematika. Sejarah matematika tidak saja ada karena keberadaannya merupakan suatu keniscayaan, tetapi ia juga penting karena dapat memberi pengaruh kepada perkembangan matematika dan pembelajaran matematika.

Matematika yang ”diciptakan” oleh manusia terdahulu, memberi ilham bagi paradigma pembelajaran yang bersifat konstruktivistik sebagai bentuk implikasi sejarah matematika dalam pembelajaran. Siswa-siswi diperbolehkan menggunakan usahanya sendiri dalam menyelesaikan masalah matematika.

Bahkan, siswa dan siswi diberi kebebasan dalam menggunakan bahasa dan lambangnya sendiri. Paradigma semacam ini menjadi suatu kecenderungan dalam pembelajaran matematika realistik atau konstruktivis. Perkembangan matematka dalam diri individu (ontogeny) mungkin saja mengikuti cara yang sama dengan perkembangan matematika itu sendiri (phylogeny).

Sejarah matematika meliputi beberapa dimensi berbeda, yaitu
(1) sebagai materi pembelajaran kuliah,
(2) sebagai konteks materi pembelajaran,
(3) sebagai sumber strategi pembelajaran.

Di samping itu, dalam penggunaannya sejarah matematika mempunya beberapa manfaat, di antaranya:

a) Understanding, yaitu bahwa dengan mengikuti jalan perkembangan suatu konsep matematika bahwa siswa-siswi akan lebih memahami konsep tersebut;
b) Enthusiasm, yaitu penggunaan sejarah matematika dapat meningkatkan motivasi, kesenagan dan kepercayaan diri dalam belajar matematika;
c) Skill, yaitu dengan menelaah suatu tema dalam sejarah matematika, siswa-siswi diajak untuk belajar keterampilan meneliti, selain keterampilan matematika.

Tahapan dalam Matematika

Disiplin utama dalam matematika didasarkan pada kebutuhan perhitungan dalam perdagangan, pengukuran tanah, dan pemprediksian peristiwa dalam astronomi. Ketiga kebutuhan ini secara umum berkaitan dengan ketiga pembagian umum bidang matematika: struktur, ruang, dan perubahan.

a) Pelajaran tentang struktur dimulai dengan bilangan. Pertama dan yang sangat umum adalah bilangan natural dan bilangan bulat berikut operasi arimetikanya, yang dijabarkan dalam aljabar dasar. Sifat bilangan bulat yang lebih mendalam dipelajari dalam teori bilangan.

b) Ilmu tentang ruang berawal dari geometri, yaitu geometri Euclid dan trigonometri dari ruang tiga dimensi (yang juga dapat diterapkan ke dimensi lainnya), kemudian belakangan juga digeneralisasi ke geometri Noneuclid yang memainkan peran sentral dalam teori relativitas umum. Bidang ilmu modern tentang geometri diferensial dan geometri aljabar menggeneralisasikan geometri ke beberapa arah: geometri diferensial menekankan pada konsep fungsi, buntelan, derivatif, smoothness, dan arah. Sementara itu, dalam geometri aljabar, objek-objek geometris digambarkan dalam bentuk sekumpulan persamaan polinomial.

c) Mengerti dan mendeskripsikan perubahan pada kuantitas yang dapat dihitung adalah suatu yang biasa dalam ilmu pengetahuan alam, dan kalkulus dibangun sebagai alat untuk tujauan tersebut. Konsep utama yang digunakan untuk menjelaskan perubahan variabel adalah fungsi. Banyak permasalahan yang berujung secara alamiah kepada hubungan antara kuantitas dan laju perubahannya, dan metoda untuk memecahkan masalah ini adalah topik dari persamaan differensial.

d) Untuk merepresentasikan kuantitas yang terus menerus digunakanlah bilangan riil. Di sisi lain, studi mendetail dari sifat-sifatnya dan sifat fungsi nilai riil dikenal sebagai analisis riil. Agar dapat menjelaskan dan menyelidiki dasar  matematika, bidang teori pasti, logika matematika, dan teori model dikembangkan. Bidang-bidang penting dalam matematika terapan ialah statistik, yang menggunakan teori probabilitas sebagai alat dan memberikan deskripsi itu, analisis dan perkiraan fenomena dan digunakan dalam seluruh ilmu. Analisis bilangan menyelidiki teori yang secara tepat guna memecahkan bermacam masalah matematika secara bilangan pada komputer dan mengambil kekeliruan menyeluruh ke dalam laporan.